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Dedication 

 

This program is dedicated to the memory of Henry F. Kaiser, my mentor at the University of 

California. In addition to his many theoretical contributions to factor analysis, Kaiser contributed 

greatly to the practical application of exploratory factor analysis as realized in the computer 

program. He produced many programs throughout his career, and each of these he thought would 

be his last. But he continually revised and reformulated his ideas about what a good program 

should accomplish. Kaiser took many radical shifts in direction, and continued to do so until the 

very end of his life.  

 

Explorer is a program based on my own ideas about what is useful in an exploratory factor 

analysis program. Kaiser and I were not always in agreement about this, but still, his influence on 

my thinking is very much alive in Explorer. In that same spirit I regard Explorer as an organic 

product, which will continue to grow and develop. 
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Fleming, J. S. (2017). Explorer: A program for common factor analysis and related methods for 

data analysis, Release 4.0. [Online software and manual.] Retrieved from: http://swppr.org. 

 

 

Disclaimer 

 

Explorer is a free product, with no guarantees. I will attempt to fix any reported problems within 

a reasonable time frame, as it is within my ability to do so.  
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Preface  
(with Caveat) 

 

 

This manual instructs people in the use of a program that was designed for many different 

kinds of exploratory data analysis. Some of these are very basic and familiar, others less 

so. Less familiar features include some relatively recent methods such as the exploratory 

bi-factor rotations and coefficient omega for factor scales, which I hope that researchers 

will eventually find useful. Other features, such as “Harris” component analysis, are more 

obscure, and will probably be less interesting to most users. I include these not just for 

completeness, but also because people with psychometric backgrounds may find some of 

them methodologically intriguing. 

 

My caveat is simply this: the manual will not teach anyone the proper use of factor 

analysis and related methods, so it is assumed that readers already understand the 

underlying theory and necessary mathematics required for these methods. If this is not the 

case then are many useful textbooks on the factor analysis or multivariate analysis that 

can be helpful. The texts by Lee and Comrey (1992), Gorsuch (1983), Harman (1976), 

and Mulaik (2010), are all useful resources. 

 

Having said that, please note that I have included several “Help Boxes” that offer some of 

my thoughts on how to choose a method of analysis, how to decide on the correct number 

of factors, interpreting matrix output, the comparative usefulness of exploratory versus 

confirmatory factor analysis, and methods of assessing scale reliability. I do hope that 

some readers may find these helpful. But they are based on my own opinions and 

preferences; so they are  neither definitive nor are they intended as a substitute for a solid 

course on factor analysis. 

 

 

-Jim Fleming, June, 2017 

 
 

 

 

 

What’s New in Explorer? 
 

 

Explorer 4.0 includes bootstrap standard errors for factor loadings and correlations (see 

Appendix A), and maximum likelihood estimation. 
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Explorer: A Program for Common  

Factor Analysis and Related Models 

for Data Analysis 

 

User’s Guide 

 

 

 

A Brief History 

 
Explorer has a long history but a brief existence as complete package. It was designed 

and coded by James Fleming, beginning with some very early matrix algebra and 

eigenvalue/vector routines written in the 1970s, tied to a “Little Jiffy” program (principal 

components with varimax rotation, etc.). A few subsequent extensions were also made, 

but it wasn’t until much later, after setting it aside several times, that the current program 

began to take shape. Although Explorer began with Fortran IV code, it was eventually 

expanded and re-written in Fortran 90, then most recently in F2003. The earliest routines 

ran on huge mainframes, some of which filled entire rooms; then these were converted 

for use on mini-computers, that occupied only a corner of a room; with the present 

version running on later releases of the Windows environment, fitting neatly on your lap 

or desktop. (Or even on your smartphone—if your eyes are better than mine.) 

 

 

Overview of Capabilities 
 

Explorer Performs Three Exploratory Models 

The Explorer program performs three exploratory models for data analysis:  

 Multiple common factor analysis, in the tradition of L.L. Thurstone (1947). 

 Component analysis, including principal components, due to Harold Hotelling (1933).  

 Image analysis, as originated by Louis Guttman (1953).  

However, the emphasis here is on the common factor model. 

 

Range of Applications 

Explorer is designed as: 

 A general purpose exploratory factor analysis program. 

 A program with special features for constructors of multidimensional tests designed 

to be “factor pure,” with helpful scale and item level statistics. 

 A truly exploratory program with features geared toward examining data sets with 

complex variables (variables that saturate more than one factor) having unknown 

factor structure. 
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 A program that facilitates testing hypotheses regarding factor structure within the 

context of exploratory models. 

 A practical program for beginners as well as a program with advanced features that 

will be of interest to students of psychometrics. 

 

Factor Extraction Methods 

 Principal components/principal axis. Common factor analysis and principal 

component analysis may be performed by the principal axes method; by 

decomposition of correlation or covariance matrix into eigenvalues and eigenvectors. 

Likewise, image analysis, alpha factor analysis, and image common factor analysis 

involve an eigenvalue/vector decomposition of the appropriate correlation or 

covariance matrix, as does ordinary or unweighted least-squares factor analysis.  

 

 MICA Extraction by pre-defining the factor structure (multiple independent cluster 

analysis option). Refer to the section on confirmatory features for details. 

 

Model and Method Varieties  

 Factor analysis: Varieties include principal axes factor analysis, maximum 

likelihood (e.g., Jöreskog, 1967), ordinary least-squares (aka OLS, ULS, or minres; 

e.g, Harman & Jones, 1966), alpha factor analysis (Kaiser & Caffrey, 1965), 

Jöreskog’s (1966; 2007) image factor analysis; and multiple independent cluster 

analysis (MICA; following Guttman, 1952). 

 Component analysis: Principal components (Hotelling, 1933), Harris (1965) 

component analysis, and MICA are available. 

 Image analysis: Guttman’s (1953) image analysis is available, as well as MICA. 

 

Confirmatory Features 

 Multiple independent cluster analysis (MICA). With most methods the user may pre-

specify factor or component weights by including a variable weight matrix. MICA 

options are especially useful for cases in which independent clusters of variables or 

items are hypothesized—where each variable loads on one and only one factor. The 

method was described by Guttman (1944; 1952), and independently formulated by 

Holzinger (1944) as “multiple group” factor analysis
1
. MICA may be useful in test 

construction applications in which items are expected to form homogeneous but 

correlated clusters.  

 Target rotation. Hypercon (Fleming, 2012) uses a different rationale from MICA. 

Whereas the latter was designed for cluster-oriented solutions, hypercon is a more 

general procedure based on the early work of Horst (1941) in hyperplane fitting, and 

extended by Derflinger and Kaiser (1989) and Fleming (2012). While MICA is 

“extraction” based, hypercon is “rotation” based. Promax target rotation 

(Hendrickson & White, 1964) uses a pre-specified target matrix. 

 

                                                 
1
 Also known as oblique multiple group factor analysis (OMG; Stuive and others, 2008). I prefer the name 

multiple independent cluster analysis simply because most people think of “multiple groups” as referring to 

different groups of people rather than to clusters of variables. 



 

 -3- 

 

MICA requires entering a variable weighting matrix whereas hypercon and promax 

require entering a target matrix for rotation (see Figure 2). 

 

Input and Dispersion Matrices 

The program accepts raw data from which a correlation, covariance, or average cross-

products matrix is formed, or a correlation or covariance matrix may be input directly. 

Either of the latter may be factored but by tradition, exploratory factor and component 

analysis favor the use of correlations. Harris component analysis, image analysis, and 

image factor analysis factor utilize special covariance matrices that are computed 

automatically when these options are selected. Ordinary least-squares  requires that a 

correlation matrix be factored. Table 2 shows permissible combinations of models, 

methods and matrices. 

 

A loading (factor pattern) matrix to be rotated by any one of several methods may also be 

input rather than a raw data or correlation/covariance matrix. 

 

Rotations 

Explorer provides a number of factor rotations, including all of the orthomax class of 

quartic orthogonal rotations (such as varimax, quartimax, equamax, and parsimax; see 

Crawford & Ferguson, 1970; Clarkson & Jennrich, 1988). For oblique rotations Harris 

and Kaiser‘s (1964) orthoblique, promax (Hendrickson & White, 1964), oblique quartic 

rotations such as oblimin (Jennrich & Sampson, 1966) and the Crawford & Ferguson 

family of (1970) rotations, and several hyperplane fitting methods are available (Fleming, 

2012). Bi-factor rotations and others using gradient projection algorithms (Bernaards & 

Jennrich, 2005) are included as well. 

 

Additional Features 

 Number of factors. The number of factors (or components) can be determined by 

several methods.  

 Communalities. These can be estimated by several methods for the common factor 

model.  

 Univariate and multivariate outlier detection. Available when raw data are input. 

 Statistics and fit measures. A number of univariate and multivariate statistics may be 

requested when raw data are input for both descriptive purposes and to help in 

identifying outliers. Also, several goodness of fit measures are available for 

interpreting and evaluating results.  

 Residuals analysis. Extensive residuals analysis can help to spot variables, or variable 

pairs, for which factoring is incomplete.  

 Factor scores. Factor score estimates by all leading methods may be requested.  

 Graphic displays. Graphic plots of eigenvalues, factor loadings, and residuals are 

available.  

 Second-order and hierarchical factors. Second-order factors and the Schmid-Leiman 

(1957) solution for hierarchical factors are available. 

 Bifactor analysis. Available as of release 3.3, per Jennrich and Bentler (2011; 2012). 

 Missing data. Explorer includes missing data options that are useful when a few cases 

or values are randomly missing. 
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All of these features are described in greater detail further on in this guide. 

 

Comparisons with Commercial Software Packages 

Commercial software packages such as SAS
TM

 , STATA
TM

, and IBM SPSS
TM

 perform 

many of the same factor and rotation procedures as Explorer, yet each offers unique 

features as well. Explorer does (for example) more rotations than those found in those 

programs (see Tables 5a, 5b, and 8). Explorer also offers some factor scale and item 

analysis features not found in other factor analysis programs; and Explorer is still under 

development, so more features are planned for future releases. 

 

The Explorer Command File and Explorer Command Language (ECL) 

A command file is used to specify the flow of processing. This is a free-format file 

(entries are not required to be in specific columns or fields) but maximum record length 

is 80 characters. The command file is organized into paragraphs into which specific 

command statements are entered (e.g., cases = number; in which the number of cases is 

specified). Taken together the syntactical structure forms a kind of language: Explorer 

Command Language, or ECL. But the syntax is simple and easy to learn—especially 

from the examples given here. 

 

Executing Explorer 
 

Explorer runs interactively in “command” mode where the user is asked, simply, for the 

number of variables and names of the command and output (listing) file names. The user 

is first greeted by the message: 

 

Running EXPLORER  . . . 

 

Next, the user is prompted for the number of variables and the necessary file names with: 

 

Number of variables:   [Total number of variables read] 

Command file:                                [Name of file containing ECL processing commands] 

Listing file:                                      [Explorer output or “results” file] 

 

If there are any errors, the user is so notified on the screen, as in: 

 

*** Program halted due to errors. 

 

Additional error information may appear on the screen, but in general more detailed error 

messages and warnings are printed on the listing file. 

 

A normal end of run is signaled by the message: 

 

. . . All Done! 
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The Explorer Command File and Command Language 
 

1. Basics 

An Example 

Figure 1 is provided because a pictured example is truly worth 1,000 words. It illustrates 

a typical command file for running Explorer. Note that comments are entered in curly 

brackets {}. These are for documentary purposes only and are not executed. 

 

Command File Structure: Paragraphs and Statements 

Explorer commands are organized into paragraphs. The paragraphs and the command 

statements within them of the command file are order independent, except for the final 

<end> paragraph—which contains no statements—but logical considerations suggest an 

ordering like the example in Figure. 1. Comments, however, may be placed wherever 

they are desired. 

 

 

<headers>                               {Headers (1 to 3 lines) are optional} 

  ‘Box Problem from Thurstone (1947) for 20 Variables’; 

  ‘Uses Data Matrix from Kaiser and Horst (1975)’; 

  ‘OLS Factoring with Oblique Transformation’; 

 

<data> 

   cases = 40; matrix = raw;  file = ‘c:\mydata\box20.dat’; 

{There are 40 cases; a raw data matrix is input; the format is 

      ‘freeform’ by default; and the path to the data file is given.} 

 

<analysis> 

     method=ols; {Ordinary least-squares is the factoring method.} 

     matrix = corr;    {The correlation matrix is analyzed.} 

     trans = cfvm;  {The transformation is Crawford-Ferguson oblique 

varimax.} 

     com=smc;  {Squared-multiple correlations are initial communalities.} 

     number =3;    {Number of factors is pre-specified to be 3.} 

 

<plots> 

    eigen;    {Sree plot of eigenvalues (default).} 

    trans = 3;    {Plot first 3 obliquely transformed factor pairs.} 

 

<output> 

    all;     {Maximum output is to be printed.} 

 

<end>                                     {This is always the last paragraph—contains no statements 

but it is required.} 

 

 

Figure 1: Example of an Explorer Command File and  
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Explorer Command Language (ECL) 

The maximum record length for the command file is 80 characters (spaces); any 

statement that is longer than this length can simply be continued on the next line. Within 

this limitation statements and paragraph names may appear freely in any position. 

 

Embedded blanks are ignored (except when placed within single quotation marks, like 

this: ‘variable 1’). 

 

Paragraph names are placed within angle brackets. Example: 

 

   <data>     (this is the beginning of the data paragraph) 

 

Statements within paragraphs are the “sentences” that define the analysis. Statements 

always end with a semicolon. Example: 

 

   file = ‘c:\mydata\myfile.dat’; (specifies the name and location of the data file) 

 

Paragraph names and statements are not case sensitive. Examples: 

   <data>       is the same as:    <DATA>  (name of data paragraph) 

   CASES = 100;               is the same as:      cases = 100; (statement tells that there are 

100 cases) 

Comments 
Comments may appear anywhere in the command file. Comments can be useful for 

documenting procedures for future reference. Comments are enclosed in curly brackets, 

as in: {This is a comment.}  

 

Headers Paragraph 

Explorer allows up to three lines of heading that are printed at the top of each page of 

output for documentation purposes. These are enclosed in single quotes in the command 

file. The maximum length of a header is 65 spaces. Examples: 

 

<headers>  

     ‘Analysis of Smith Learning Data’;  

     ‘Principal Factor Analysis with Orthoblique Rotation’;  

 ‘Collected May, 2009’; 

 

Data Paragraph 

This paragraph specifies basic processing parameters, such as the number of cases, the 

form of the input data matrix (raw, correlation, or covariance), Fortran type variable 

format for reading the data if needed, and the name of the file containing the data. 

Possible entries are shown in the Table 1. 
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Table 1 

Statements for the Data Paragraph 

 

Statement   Interpretation 

cases = n;   The number of cases (n) may be given, even if input matrix is a 

correlation or covariance matrix, because this value may be used 

in certain statistical computations. Conversely, the number of 

cases can be computed automatically when data are read from the 

raw data file—in which case the statement is not needed. 

 

file= ‘filespec’;  The name of the input file containing the raw data, covariance, or 

correlation matrix—including the path to the file, if not in the 

current directory—should be enclosed in single quotes. 

 

format= ‘(format)’;

  

A Fortran-type variable format for reading the data file should be 

specified unless the data are in “free” format—that is— the data 

values are separated by blanks. In the latter case, use: format = *; 

(or specify nothing, as this is the default). Format specifications 

are embedded in single quotes and begin and end with 

parentheses, as in: ‘(5x,20f3.0)’; 

 

matrix = matrix; This refers to the matrix that is read into the program for analysis. 

The options are raw, correlation, covariance, and loading. 

 

boots = nboots; For bootstrapped standard errors (refer to Appendix A for details). 

 

shape = shape; The shape of the correlation/covariance matrix that is input can be 

full (fu), lower triangular (lt), or sub-diagonal (su). The latter only 

applies to correlation matrices. Full is the default. 

 

missing = value; Missing data are indicated by blanks (hence data must be read by 

a format when there are missing values). There are two options 

for value: case deletion (cd) and mean replacement (mr). (These 

options are useful when there is a small number of missing data 

points that are missing randomly.) 

 

wtfile
*
=filespec; Specifies location of the weight file for the MICA options. 

 

tfile
*
=filespec; Specifies location of the target file for hypercon or promax 

rotations. 

save; Causes matrix output (matrix to be factored and loading matrices, 

and factor intercorrelations if oblique) to be output to a file named 

MATRICES.LIS. 

*These files are always in “freeform” format. See Figure 2 for examples. 
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Table 2 

Permissible Combinations of Method and Matrix for Each Model 

(Analysis paragraph) 

 

Model  Specs for method=                 Specs for matrix=     

Common 

factor 

analysis 

pfa;                Iterated principal     

                      factor analysis
*
  

                      (principal axes) 

 

ols;  uls ;       Least squares 

or minres; 

 

jk;                  Jöreskog’s image  

                      factor analysis 

                                             

ml;                Maximum 

                     likelihood 

 

alpha             Alpha factor  

                      analysis  

 

mica1;           MICA 

 

 

Correlation**  or covariance, (cor or 

cov) 

 

 

Correlation (cor) 

 

 

Correlation (cor)
±
 

 

 

Correlation or covariance 

(cor or cov) 

 

Correlation
 
(cor) 

 

 

Correlation (cor) 

Component 

analysis 

pca;               Principal 

                     components 

 

harris;           Harris components  

 

mica2;          MICA 

 

 

Correlation
**

, covariance, or cross-

products
†
 (cor, cov, or xp

†
) 

 

 

Correlation (cor)
±
 

 

Correlation
 
(cor) 

Image  

analysis 

image;          Image analysis 

 

 

mica3;          MICA 

 

(Partial) image covariance matrix 

(cor)
±
 

 

(Same as above) 

     *Default method.  **Default matrix for this method.  
    ±

These methods actually factor a special kind of covariance matrix, but computations begin with correlations, and the 

methods are scale-free so that beginning with correlations is a convenience rather than a necessity.  

    
†
Matrix of average sums of squares and cross-products (ASSCP) of raw scores. 
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Help Box 1: 

Which Combination of Model and Method Should I Choose? 

 
This is not a easy question to answer. It depends on many factors, including the 

researcher’s knowledge of factor analysis methods, and whether the research is 

more exploratory or confirmatory (within the context of exploratory factor 

analysis). If the research is designed to test very specific hypotheses regarding 

the factor structure then a structural equation modeling (SEM) program should 

be considered rather than Explorer. 

 

Image analysis is a theoretically interesting method, but mainly to students of 

factor analysis rather than to the average researcher. The same can be said of 

Harris component analysis. On the other hand, alpha factor analysis and 

Jöreskog’s image factor analysis are useful methods of common factor analysis 

that have been underexploited.  

 

For most researchers, the issue comes down to a choice between component 

analysis and factor analysis. As it happens, principal components and principal 

factors often produce results for which the factor patterns look similar, though 

there are cases where the differences are notable. But the statistical theory 

underlying these two models is quite different. A good discussion of the 

differences can be found in Widaman (2007). 

 

The author’s preference, by background and training, is for the common factor 

model. When the scale of measurement is arbitrary, as with many psychological 

variables, correlation matrices are more convenient than covariance matrices; 

and today’s methods make analysis of correlation structures (including 

exploratory factor analysis) statistically respectable (Bentler, 2007).  

 

Principal axis factor analysis is the most commonly used method. Aside from 

this, alpha, and Jöreskog’s method, there are several others for the common 

factor model. These include unweighted least-squares (or ULS, also called 

ordinary least squares, or OLS), and maximum likelihood (ML). Although 

maximum likelihood has been the favored method among statisticians, ML can 

be problematic. In a study of estimation methods, MacCallum, Browne, and Cai 

(2007) found that “… it rarely occurred that ML recovered [weakly defined] 

factors better than did OLS, and it never occurred that ML recovered [a weak 

factor] accurately while OLS did not” (p. 165). On the other hand, the statistical 

theory for ML is more highly developed than for other methods (e.g., in 

facilitating the computation of standard errors). 

 

The foregoing are a few of the author’s thoughts; but each person must decide 

which combination of methods is most suitable for his/her needs.  
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Analysis Paragraph 

This paragraph drives the analysis. The method, matrix to be factored (as opposed to the 

input matrix), the rotation and transformation are specified, as are the communality 

estimation method and the method for determining the number of factors. (A 

transformation refers to an oblique transformation of axes, as opposed to an orthogonal 

rotation, because in some cases oblique analysis follows a preliminary orthogonal 

rotation.) There are several tables following that specify the syntax used in the data and 

analysis paragraphs. 

 

Method of Factoring and Matrix to be Analyzed 

These are summarized in Table 2. (For example: method=pfa; matrix=cov;). 

 

Rotations: Orthogonal rotations are summarized in Table 5a; oblique transformations in 

Table 5b. Note that some of these are really combinations of others. For example, 

varimax, quartimax, equamax, and parsimax are all special cases of the more general 

orthomax rotations in which the gamma parameter is defaulted; so these can be 

considered convenient shortcuts. The same may be said of some of the oblique rotations, 

where direct quartimin is a special case of direct oblimin in which the delta parameter is 

preset; and so forth with weighted oblimin, etc. 

 

To obtain an orthogonal rotation, the syntax is “rotate=rotation;” where the latter 

parameter is the type of rotation. Example:  

 

   rotate=vmax; 

 

 for varimax. For oblique transformation the syntax is “trans=rotation;” as, for example, 

 

    trans=dq; 

 

for quartimin (aka direct quartimin). 

 

Random starts : By default, Explorer produces 50 random orthogonal starts for rotations. 

To change this, specify: 

 

   Random = number; (for example, random=0 to suppress random starts). 

 

Kaiser normalization: To suppress Kaiser normalization prior to rotations (default for all 

except weighted varimax), use the statement:  

 

   nonorm; 

 

Communalities and number of factors options are given in the following tables. Table 3 

describes communality options and the number of factors options are shown in Table 4—

but see the box following regarding the determination of the number of factors.  
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Second-order factors 

Use “secord;” to obtain a second-order factor analysis, including Schmid and Leiman’s 

(1957) hierarchical loadings. Optionally, use “nsec=number;” to specify the number of 

second-order factors. (Second order factors are currently computed only using pfa, ols, 

and pca factoring.) 

 

Table 3 

Communality Options (Analysis Paragraph) 

 

Value   Explanation 

com = smc;
*
 Squared-multiple correlations. 

 

com = bigr; Largest absolute off-diagonal element for each row. 

 

com = lso; Largest squared off-diagonal element. 

 

com = unity; Ones are placed in the diagonal of the correlation matrix. 

 

diag = value1,  

     value2, …; 

A list of numeric values is placed in the diagonal. These are 

separated by commas. 

Note: Communalities apply only to the common factor model. Initial communalities when a covariance 

matrix is factored are variances (SMCs and unity do not apply). 
*
This is the default for communalities when a correlation matrix is factored. 

   

 

Table 4 

Number of Factors Options (Analysis Paragraph) 

 

Value   Explanation 

number = p; The number of factors (p > 0) is pre-specified. Must be < the 

number of variables; strictly < this number for common factors. 

number = kg; The number is determined by the Kaiser-Guttman rule 

(eigenvalues of correlation matrrix > 1.0). 

 

number = 0; 

(default for number 

of factors) 

The Zoski & Jurs (1996) method of approximating Cattell’s 

(1966) scree test is used to estimate the number. (If the number of 

variables is < 6, however, the program defaults to kg.) 

 

ecrit = value; The number of factors retained is equal to the number of 

eigenvalues > value (e.g., ecrit = 2.0). 

 

pct = percent; 

(technically applies 

only to PCA) 

The value here is a percentage between 1.0 and 100.0 in which 

the number of components retained “accounts for” this percentage 

of variance. (E.g., pct = 75;). (FA model does not “account for 

variance” – it “accounts for covariance.”) 
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Labels Paragraph 

Variables may be given labels or short names of up to eight characters. Labels are listed 

in the order in which the variables are input, though variables can later be re-ordered if 

desired. Labels are enclosed in single quotes, so that they are case sensitive and may 

include blanks or special characters. Example (for five variables): 

 

<labels> 

     ‘age’;  ‘test 1’; ‘test 2’; ‘test 3’; ‘final’; 

 

  

Help Box 2: 

An Important Note Regarding the Number of Factors 
 

Options for the number of factors are shown in Table 4. Deciding on the 

correct number of factors is probably the most important decision to be made 

in using factor analysis and the related models—more crucial, in fact, then the 

method of extraction or of rotation—and perhaps even more important than 

the choice of model. Yet many people rely on computer software to determine 

this number, or rules of thumb such as the Kaiser-Guttman rule (factors or 

components are retained when corresponding eigenvalues of the unaltered 

correlation matrix are > 1). If researchers haven’t some more rational reason 

then it is a good idea to explore the data by extracting different numbers of 

factors, then deciding based on interpretability, or perhaps by a careful 

scrutiny of the scree (eigenvalue) plot, which is output by Explorer by default. 

 

With this caveat in mind (I carefully considered whether there should even be 

a default), Explorer does have a default option, the Zoski & Jurs (1966) 

method, which is, as its title suggests, “An objective counterpart to the visual 

scree test …” This method seems to work well in many circumstances, and in 

any case, can provide a good starting point for further exploration of the data. 

 

 

 

Select Paragraph 

This paragraph is used to select variables and cases. Note that values in lists are separated 

by commas. Examples are: 

 

   case_deletion = 23, 24; Deletes cases with ordinal numbers in the file of 23 

    and 24. 

   reorder = 1, 3, 5, 9, 7, 10; Assuming 10 variables this omits numbers 2, 4, 6, and 8, 

    and also switches 9 and 7. 

   delete = 3, 6, 9;   Use all variables on the list except 3, 6, and 9. 

   keep = 1, 6, 8, 10, 12, 15; Keep is the inverse of delete because it specifies which 

    variables to include rather than which to exclude. 

 

Note: Only one of the latter three select options—reorder, delete, or keep, may be 

specified for a given analysis as these are mutually exclusive. Reorder is the most general 
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because it tells the program which variables to use, which to drop, and in what order they 

should appear. 

 

 

Table 5a 

Summary of Orthogonal Rotation Options (Analysis Paragraph) 

 

Class
*
 

        Modifying           Parameter 

Rotation type   Code   parameter            Default   Source  

A Varimax
**

 vmax;   Kaiser (1958) 

 

A Weighted varimax wvmax;   Cureton & 

Mulaik (1975) 

A Quartimax qmax;   
 

** 

A Biquartimax bi;   
*** 

 

A Equamax emax;   Saunders 

(1962) 

 

A Parsimax pars;   Crawford & 

Ferguson 

(1970) 

A Factor parsimony 

 

fp;   (As above) 

A Orthomax 

 

omax; gamma = 

(value); 

1.0
†
 (As above) 

B Bi-factor quartimin bqmn;   Jennrich & 

Bentler 

(2011) 

B Bi-factor minimum entropy 

 

bmnt;   (As above) 

C Minimum entropy 

 

ment;   Jennrich 

(2004) 

C Orthosim osim;   Bentler 

(1977) 
 
*
Classes: A = orthomax, B = Bi-factor, C = Other. 

  
**

Varimax is the default orthogonal rotation.  
  

**
Four papers that appeared at about the same time introduced quartimax, or rotations that were essentially 

equivalent (Carroll, 1953; Ferguson, 1954; Sauders, 1953; Neuhaus & Wrigley, 1954). 
   

***Orthogonal equivalent of biquartimin (see Table 5b). 

  
 †
Equivalent of varimax. 

  

 



 

 -14- 

 

Table 5b 

Summary of Oblique Rotation (Transformation) Options (Analysis Paragraph) 

                  Modifying       Parameter 

Class
*
 Type                     Code            parameter  Default  Source  

A Direct quartimin dq;   Jennrich & Sampson 

(1966) 

A Direct 

oblimin 

 

dobl; delta=value; 

(value ≤ 0.) 

0. Jennrich & Sampson 

(1966) 

A Weighted 

oblimin 
 

wobl;   Lorenzo-Seva (2000) 

A CF
†
 “oblique 

varimax” 

cfvm;   Crawford & Ferguson 

(1970); Clarkson & 

Jennrich (1988) 

A CF
†
 “oblique 

quartimax” (aka 

quartimin) 

cfqu;   (As above) 

A CF
†
 “oblique 

equamax” 

 

cfeq;   (A above) 

A CF
†
 “oblique 

parsimax” 

 

cfpa;   (As above) 

A Biquartimin 

 

cfbi;   (As above) 

A Covarimin 

 

cfco;   (As above) 

A Factor 

parsimony 

 

cffp;   (As above) 

B 

 

Orthoblique 

“Class II” 

 

orthob; power = value; 0.5 Harris & Kaiser (1966) 

B Orthoblique: 

independent 

clusters 

 

inclus;   (As above) 

C Promax pmax; power = value; 4 Hendrickson & White 

(1964) 

C Weighted 

promax 

 

wpro; power = value; 4 Cureton & Mulaik 

(1975) 

C Promax target 

(confirmatory) 

 

target;    
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C Promaj 

 

pmaj;   Trendafilov (1994) 

C Casey (or KC) 

 

kc; power = value; 4 Kaiser & Cerny (1978) 

C Horst-Hilsch hh; power = value; 4 Derflinger & Kaiser 

(1989) 

C Hypermax hyper; power = value; 4 Fleming (2012) 

 

C Hyperalt
**

 

 

ha; power = value; 4 (See footnote) 

C Hypercon target 

(confirmatory) 

hcon;   Fleming (2012) 

 

D Oblisim osim;   Bentler (1977) 

 

D Geomin geo; geps = value; .01 Yates (1987), Browne 

(2001) 

E Bi-factor 

quartimin 

bqmn;   Jennrich & Bentler 

(2012)  

E Bi-factor 

geomin 

bgeo;   (As above) 

 
    *

Classes: A = Quartic/analytical (Clarkson & Jennrich, 1988); B = based on rescaled eigenvectors 

(Harris & Kaiser, 1966); C = procrustes/hyperplane fitting; D = other; E = Bi-factor. 

    
**

Hyperalt uses direct oblimin as the preliminary rotation. At present it is experimental. 

       †CF = Crawford/Ferguson.  

   

 

Table 6 

Factor Scoring Options
*
 (Analysis Paragraph)        

 

Value          Explanation 

fscore; For component and image analysis, requests that scores be 

computed directly. For factor analysis estimated scores have 

several choices but the default is fscore=regression; 

 

fscore=regression; Common factor analysis only: Scores are estimated by the 

regression method. (Same as just fscore; with no argument.) 

 

fscore=bartlett; Common factor analysis only: Scores are estimated by Bartlett’s 

method. 

 

fscore=ideal; Common factor analysis only: Scores are estimated by the ideal 

variables method. 

 

Note: Factor scores are output to a file called ‘FSCORES.DAT’.  
*
A good discussion of these can be found in Harman (1976). 
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Output Paragraph 

The output paragraph allows users to select or limit the amount of printed output. For 

minimal output (communalities and final loadings) use the keyword: 

 

   min; 

 

For all (maximal) output, use: 

 

   all; 

 

Refer to Table 7 for more exact details on output options. Typical examples might be: 

 

<output> min; cor; univ;  (Minimal output as shown in Table 7, plus correlation 

matrix and univariate statistics.) 

<output> pcor;  (Default output, per Table 7, plus partial and multiple 

correlations.) 

 

(Note: Explorer (i.e., your author) really wants to give you the correlation matrix with 

scree plot and associated eigenvalues, even if you are analyzing a covariance matrix and 

have already decided on the number of factors. These can, of course, be suppressed.) 

 

Plots Paragraph 

This paragraph specifies optional plots that may be requested. Options are: 

 

<plots>    eigen;  (Scree plot of eigenvalues. This is the default, unless 

minimal output is requested—see Table 7.) 

     init = 3;  (Plots first three pairs of factor loadings for initial 

solution.) 

     rotate = 3;  (Plots first three pairs of factor loadings for 

orthogonal rotation.) 

     trans = 4;  (Plots first four pairs of factor loadings for oblique 

solution.) 

 

Residuals plots do not need to be requested as they are produced automatically when 

residuals analysis is requested in the output paragraph. 

 

Details Paragraph 

Most users will seldom need the features provided in the <details> paragraph but there 

are a few parameters that occasionally my need changing. These include altering the 

maximum number of iterations for extracting factors and for rotation, the convergence 

criteria for these processes, and the number of decimal points printed for matrix output. 

Also, the values for identifying salient versus hyperplane elements to be used when 

sorting loadings can be specified. The defaults are 500 iterations for extraction and 500 

for rotation, with epsilon values of .000001 for convergence. The default number of 

decimal places is 3. The default for salient loadings is 0.395 (rounds up to .40) and 0.204 

for hyperplane elements. These can be changed using the following statements: 
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<details> 

   maxit = value;  (Set maximum iterations for extraction—default = 500.) 

   maxrot = value;  (Set maximum iterations for rotations—default = 500.) 

   fconv = value;  (Set convergence criteria for extraction—default = .000001.) 

   rconv = value;  (Set convergence criteria for rotation—default = .00001) 

ndec = value;              (Set no. of decimal places [2- 4] for matrix output—default = 3.) 

   hival = value;  (Value considered “large” for loadings—default = .395.) 

   loval = value;  (Value considered “zero” for loadings—default = .204.) 

  

     

 

1  0  0 

1  0  0 

1  0  0 

1  0  0 

0  1  0 

0  1  0 

0  1  0 

0  1  0 

0  0  1 

0  0  1 

0  0  1 

0  0  1 

 

(a) 

MICA weight 

matrix 

 

 

1  0  1 

1  0  0 

1  0  0 

1  0  0 

0  1  1 

0  1  0 

0  1  0 

0  1  0 

1  0  1 

0  0  1 

0  0  1 

0  1  1 

 

(b) 

Hypercon 

target matrix 

 

1   0    0 

.8   0   0 

.8   0   0 

.7   0  .3 

0   1   0 

0   1   1 

0  .5  -1 

0  .9  .2 

0   0   1 

.4   0  .8 

0   0 -.6 

0  .3  .9 

 

(c) 

Promax target 

matrix 

 

Figure 2: Examples of Explorer MICA Weight Matrix, and 

Hypercon and Promax Target Matrices 

 
In all examples there are 3 factors and 12 variables. In the MICA weight matrix 

(a), weights of 1 means that those correlations/covariances are simply summed for 

the corresponding factor. (It is also assumed, for convenience, that variables are 

ordered so that the first four load on the first factor, and so forth.) Although these 

weights can take on any values it makes most sense for them to be constants of 

equal value if multiple independent clusters are hypothesized. 

 

For hypercon (b) only binary values that should be used: ones (for salient 

loadings) and zeros (for loadings in the hyperplane). 

 

With promax the target matrix can take any form, corresponding roughly to the 

predicted magnitude of the loadings.  A promax target could also look like either 

(a) or (b). 

 

In all cases the weight or target matrix must be of full column rank. 
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End Paragraph 

The last paragraph consists of just the paragraph name, which signals the end of the input 

stream for the command file. The end paragraph is mandatory. It looks like this: 

 

<end> 

 

2. Technicalities
2
 

 

Abbreviations 

Paragraph names and keyword within statements may be abbreviated. Two characters is 

the minimum. Two characters will work provided these uniquely define a keyword within 

its respective paragraph. (Note an exception—for the “matrix =” statement in the analysis 

paragraph at least three characters are needed to distinguish correlation from covariance: 

cor or cov.) 

 

Examples: 

<AN>, <ANAL>, etc., may be used to abbreviate <ANALYSIS>. 

ma = , mat =, etc., may be used to abbreviate matrix =. 

 

Note that spelling errors are often forgiven, so that, for example, writing <anlasis> for 

<analysis> still works, because the string is “about” the right length and the first two 

letters are correct. 

 

Free-Form Command File 

Paragraph names and statements within paragraphs may appear in any position on the 

command file within the 80-column input field. It is only for neatness and readability that 

paragraph names begin at the left margin and statements appear indented, beginning on 

the next line, in many of these examples. 

 

Lower-Upper Case Notation 

The syntax is not case-sensitive; in other words, either upper or lower case paragraph 

names or statements may be used—except when values (such as variable names or 

headers) are enclosed within single quotes. 

 

Spaces (Blanks) 

Spaces or blanks are ignored in parsing the input file, unless they are enclosed in single 

quotes. An example of the latter is a variable name with an embedded space: ‘Time 1’.
3
 

 

 

                                                 
2
 This section is technical and is therefore optional. 

 
3
 Internally, the ECL parsing routine (a) eliminates blanks, and (b) converts all text to upper case—the 

exceptions in both cases being text enclosed in single quotes, and comments. 
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Format of Statements 

Statements can take these forms: 

 

keyword; 

keyword = value; 

keyword = value1, value2, …; 

value1[, value2, …]; 

 

A keyword standing by itself is used to request something.  

 

<output> min; evec; (min; requests minimal output, plus 

eigenvectors (evec;))  

 

Some keywords are followed by a value in order to set basic parameters for processing. 

This was seen for example above in the <data> paragraph, as when the number of cases 

was specified: 

 

   cases = 225; 

 

An example of a keyword followed by a list of values is: 

 

   diag = .60, .80, .78, .59, .35; 

 

Here the user is entering starting values for communalities in the <analysis> paragraph. 

 

A simple list of values not preceded by a keyword was seen in the labels and header 

paragraph; refer back to those for an illustration. 

 

 

Default Values 

Statements omitted from a paragraph will be defaulted. For example, if no labels are 

included, variables are labeled Var 1, Var 2, etc. And some paragraphs (e.g., labels or 

headers) may be omitted entirely when defaults are taken. 

 

No Null Paragraphs (Except for <END>) 

Some paragraphs may be omitted (e.g., <HEADERS>; <LABELS>), but if paragraphs 

are present, they must have at least one statement ending with a semicolon—the 

exception being the <END> paragraph, which has no statements. 

 

Order-independent Variable Labels 

In the <labels> paragraph some but not all variables may be labeled by using the order-

independent method, in which variable names are preceded by their ordinal index and an 

equal sign, as in this example: 

 

   2 = ‘height’; 5 = ‘girth’; 3= ‘weight’; 
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Table 7 

Output Paragraph Options 

                                                                                               Minimal   Default     All 

Keyword     Resulting Output                        (min;
**

)                 ( all; 
***

) 

univ; Univariate statistics with outlier identification N Y
*
 

 

Y
*
 

 

mult; Multivariate statistics with outlier 

identification 

N Y
*
 

 

Y
*
 

 

cor; or 

cov; 

Correlation or covariance matrix (as 

applicable) 

N Y 

 

Y 

pcor; Partial and multiple correlations N N 

 

Y 

rinv; Inverse of correlation matrix N N 

 

N 

anti; Anti-image correlation matrix N N N 

 

msa; Measures of sampling adequacy N N 

 

Y 

eval; Eigenvalues (Always 

output) 

(Always 

output) 

(Always 

output) 

evec; Eigenvectors N N 

 

N 

[none] Initial and final communalities (Always 

output) 

(Always 

output) 

(Always 

output) 

init; Initial factor solution (loadings) and 

percentages of variance 

N Y Y 

[none] Rotated loadings (pattern if orthogonal; also 

structure & factor correlations, if oblique) 

(Always 

output) 

(Always 

output) 

(Always 

output) 

refr; Reference structure (oblique). 

 

N Y Y 

rfcor; Reference factor correlations (oblique only)  

 

N N N 

resid; Residuals analysis 

 

N Y Y 

rot; Factor rotation/transformation matrix (not 

loadings) 

N Y 

 

Y 

sort; Sorted loadings (elements of pattern matrix) 

and factor scale statistics (Lorenzo-Seva, 

coefficient omega, etc.) 

N Y 

 

Y 

 ifs; Indexes of factor simplicity N N 

 

Y 

item; Factor scale and item analysis N N 

 

Y
*
 

wt; Factor weight matrix N Y Y 
 *

Applies only when raw data are analyzed.
 **

This is an order-dependent parameter that should come first 

in the output paragraph when used. 
***

Includes everything except inverse of correlation matrix, 

eigenvectors, anti-image correlation matrix, and reference factor correlations. 
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Help Box 3: 

A Word or Two about Interpreting 

the Matrices of Factor Analysis  

 
As is well-known, for orthogonal factor solutions the factor pattern matrix— 

containing the weights for regressing the factors on the variables—is identical 

with the factor structure matrix—which contains the correlations between the 

variables and factors. But in oblique solutions these two matrices are not 

identical. Oblique solutions also produce a so-called reference structure matrix, 

which is a matrix of part correlations between the factors and each variable with 

the effects of the other variables removed. All three of these matrices—pattern, 

structure, and reference structure—are sometimes referred to as “loading 

matrices,” so that this term is notoriously ambiguous when the factors are 

oblique (Harman, 1976). Indeed, some writers have advocated the elimination 

of the term “factor loadings” altogether because of this confusion. However, 

while it is always essential to clarify exactly which matrix one is presenting in a 

research report, the general term “loading” is likely to remain with us—it is too 

deeply ingrained in the psychological literature and still used by 

psychometricians today. By factor loadings, psychometricians ordinarily mean 

elements of the factor pattern, although historically Thurstone often used the 

term to describe elements of the reference structure. 

 

So, in oblique analysis, which of these matrices is the most useful for 

interpreting the factors? This is a matter of some controversy. Some favor the 

factor structure because (1) these are correlation coefficients and are therefore 

easier to interpret than regression weights, and (2) the factor structure matrix 

has analogues with other multivariate methods. It is also true that, when the 

underlying structure is poorly understood and a simple structure solution does 

not exist, then this structure matrix can be invaluable to factor interpretation. 

 

On the other hand, consider that the factor structure matrix is equal to the 

product of the pattern matrix times the matrix of factor intercorrelations, or: S = 

PRff. When there truly is a very simple structure of correlated clusters of 

variables, then structure matrix S conflates the interpretation because the near 

zero elements of the factor pattern will generally be lower than the 

corresponding elements of the structure matrix; or in other words, the structure 

matrix confounds the simplicity of the solution with the closeness or 

“correlatedness” of the factors. Better to interpret the pattern and structure 

separately in such cases, in my opinion. 

 

If you would like to “have your cake and eat it too,” some analysts (Thurstone; 

Kaiser) have advocated interpreting the reference structure (rather than the 

pattern) because (1) the elements are correlations rather than regression 
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coefficients, and (2) the reference structure matrix is column-wise proportional 

to the factor pattern. Therefore, in a relative sense, the same high, middle, and 

low loadings will be found in both. If one considers the scaling of the columns 

to be arbitrary, then this matrix can be quite interesting.  

 

The factor intercorrelation matrix, produced in oblique analysis, is always of 

interest. But the intercorrelation matrix of reference factors is useful only in 

plotting reference factors alongside primary factors for heuristic purposes—and 

is never interpreted otherwise.  

 

Then there is the factor weight matrix, which contains the coefficients used to 

estimate the factor scores. This matrix is difficult to interpret as the values can 

fluctuate due to multicollinearities in the variables. Even when the pattern 

matrix exhibits a very simple structure solution the factor weights may not 

reveal such a structure. The weight matrix will also vary considerably according 

to the method used to estimate factor scores. (This is not a problem with 

component and image analysis, however, as the scores for those methods are 

fixed and determinate).  

 

 

 

Statistical and Psychometric Measures 

Available with Explorer 
 

Univariate and Multivariate Statistics 

These can be requested when raw data are input. Univariate statistics include for each 

variable: mean and standard deviation, variance, standard error of the mean, coefficient 

of variation, number of valid cases, and skewness and kurtosis measures.  

 

Multivariate statistics include skewness and kurtosis and approximate z-values (Mardia, 

1972), mean Mahalanobis distance, Bartlett’s (1950) test for complete independence of 

the correlation matrix (aka, sphericity test), and the determinant and generalized variance 

of the correlation matrix. 

 

Outlier Identification (for Raw Data Only) 

When univariate statistics are requested, cases that are potential outliers are identified by 

the most extreme standard scores. Cases with largest Mahalanobis distance measures are 

identified in the multivariate case. When cases are judged to be outliers they may be 

eliminated from subsequent runs by using the case deletion feature in the <select> 

paragraph. 

 

Correlational Measures 

Correlation coefficients may be printed as well as the inverse of the correlation matrix, a 

matrix of partial correlations with multiple correlations on the diagonal, and Kaiser’s 

(1981) measures of sampling adequacy for each variable. The determinant and 
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generalized variance are also available (see multivariate statistics). The anti-image 

correlation matrix may also be requested. 

 

Model Fit 

Approximate chi-square measures of factor fit (as sample size increases these become 

more accurate) and degrees of freedom are given for maximum likelihood and image 

factor analysis (Jöreskog, 1962; 2007). ( Also see Residuals Analysis.) 

 

Communalities and Uniquenesses 

Initial and final communalites, and unique variances, are routinely output along with their 

means and medians. 

 

Residuals Analysis 

When residuals analysis is requested the residual correlation/standardized covariance 

matrix is printed along with a table of largest residual pairs, and a residuals plot. 

 

“Goodness” of Factor Solution Based on Loadings 

Sorted loadings may be requested in which the most salient are shown with smallest 

values set to zero. 

 

Indexes of factor simplicity for each variable (Kaiser, 1976), and their means and 

medians may be requested, along with values in hyperplane bands of various sizes (e.g., 

[-.10, +.10] and the Kaiser and Cerny (1978) hyperplane fit measures. 

 

Measures of simple matrix structure due to Bentler (1977) and Lorenzo-Seva (2003) are 

included with factor loadings. 

 

Factor Scale Measures 

Coefficients alpha (raw and standardized) may be requested for each factor based on the 

items with the highest loadings on the factor, as well an item analysis for these items 

(item-total correlation and alpha if item is removed). As of v. 3.2, confidence intervals for 

alpha are also output. Alpha is only available with raw input data. McDonald’s 

coefficient omega is also available as of release 2.0. 

 

Fleming’s (2003) scale fit indexes are also included when factor scale measures are 

requested. 
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Help Box 4: 

A Few Thoughts on Rotations 
 

Rotations of initial factor solutions are designed to improve interpretability 

by approaching Thurstone’s (1947) ideal of simple structure. His five 

principles (see, e.g., Harman, 1976, p. 99) describe this concept, but to 

oversimplify a bit, a good solution should have many loadings that are 

zeros—or in practice—differ from zero by only trivial amounts. Most 

measured attributes in nature, whether human intellectual abilities or the 

sizes and shapes of primate bones, are correlated; thus by implication 

correlated factors (oblique rotations) are likely to give simpler structure 

than orthogonal rotations. For this reason oblique solutions are favored by 

most psychometricians (if not always by researchers). 

 

(Incidentally the term rotation in mathematics refers to a rigid shifting of 

axes to maintain a 90° separation, and by tradition applies only to the 

orthogonal case. Technically the term transformation of axes is appropriate 

for the oblique case in which this angular criterion is relaxed. But by 

common usage, the term rotation has come to be applied to both the 

orthogonal and oblique cases.) 

 

It might be said that there are “good enough” rotations and then there are 

“better” rotations. If the goal of the factor analysis is validation of tests or 

constructs then many users are satisfied if there is an arbitrary separation of 

high loadings (e.g., with cutoff values of  .30 or .40) from low ones. For this 

purpose, many papers are still being published based on the standby 

orthogonal varimax rotation. If the variables are of low complexity (load 

mainly on one factor) by design, as is often the case in test development, 

then varimax or probably any of the rotations available in Explorer will 

satisfy the researcher and journal editor. Using an orthogonal rotation, of 

course, ignores the fact that the underlying concepts are almost certainly 

correlated, so many factor analysts (the author included) prefer an oblique 

solution, if only for this reason. 

 

But the main reason to prefer oblique rotations is that they can more closely 

approximate simple structure. In psychometrics the trend is to prefer 

oblique rotations that clearly locate hyperplanes. A geometric (and rather 

technical) explanation of this is given by Harman (1976, p. 87), but to once 

again oversimplify, when hyperplanes are properly fit there will be (a) 

many essentially zero loadings, and ideally, (b) a clear separation of these 

from the non-zero loadings. Moreover, hyperplane fitting rotations attempt 

to maximize the hyperplane count, or number of zero loadings (Fleming, 

2012). 
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A related reason for preferring hyperplane fitting rotations is that they are 

better at uncovering simple structure in complex data (when variables load 

on more than one factor) as in Thurstone’s (1947) 26-variable box problem 

(Fleming, 2012). In this problem and in many other examples, the 

hypermax rotation was shown to perform at least as well as any other, and 

better than most; and hypermax is also a very efficient method in terms of 

computer speed (Fleming, 2012).  

 

However, no rotation is perfect for every occasion (Browne, 2001; Fleming, 

2012), so it is often a good idea to try several, but especially when the 

project is very much an exploratory one with complexities in the variables 

and an unknown factor structure. 

 

 

 

A Note on Algorithms
4
 

 
For extracting latent roots and vectors of dispersion matrices, Explorer employs a QR 

algorithm of a Householder tri-diagonalized matrix. For certain specialized purposes, 

other eigenvalue/vector methods (Jacobi; power method ) are employed. In processing 

raw data to compute univariate moment statistics, Explorer uses procedures 

recommended by Spicer (1972) to insure accuracy and to circumvent round-off errors. 

Derflinger’s (1979) general factor analysis computing algorithm (a Newton-Raphson 

method) was adapted for ML extraction. Documentation of additional sources for 

extraction and rotation procedures are referenced in the appropriate sections of the 

manual. Percentage points for the normal distribution uses the algorithm of Odeh and 

Evans (1974). With that exception all routines were coded by the author. 

 
 

 

Explorer in Action: A Complete Example 
 

The Data and Analysis 

The data analyzed here are scores on 11 subtests of the Wechsler Intelligence Scales for 

Children, Revised (WISC-R; Wechsler, 1974). The children, who were leaning disabled, 

were enrolled in the California Center for Educational Therapy. A thorough description 

of the sample may be found in Tabachnick and Fidell (2007, Appendix B.3, pp. 938-939).  

Prior results with similar clinical samples (McMahon & Kunce, 1981; Naglieri, 1981; 

Peterson & Hart, 1979) have shown two clear factors—verbal comprehension (VC) and 

perceptual orientation (PO). A third factor, sometimes called “freedom from 

distractibility” (FD), also present, tends to be less well defined. However, the Coding 

subtest usually has the strongest saturation on FD, and sometimes Arithmetic and Digit 

Span load as well. With this in mind, the hypercon confirmatory rotation (Fleming, 2012) 

was used to verify this structure. 

                                                 
4
 This section is technical and may be omitted by most readers. 
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There are several hyperplane fitting rotations available in Explorer (Table 8), including 

hypercon. The Description column briefly summarizes each; for some empirical 

comparisons see Fleming (2012). 

  

 

Table 8 

Hyperplane Fitting Rotations in Explorer 

 

Method        Reference                               Description 

Promax Hendrickson & White 

(1964) 

A good standby rotation—but different values 

of the power parameter should be tried, as well 

as weighted promax for complex solutions. 

Promax 

target 

(As above) A useful confirmation rotation. 

Promaj Trendafilov (1994) Purportedly an improvement over promax that 

eliminates subjectivity and replaces 

approximate with exact zeros in the target. 

KC 

 

Kaiser & Cerny (1979) Works well with many conventional problems. 

 

HH Derflinger & Kaiser (1989) Works in many situations where Casey fails. 

Both Casey and HH use varimax as a pre-

rotation. 

Hypermax Fleming (2012) Improves upon HH by using weighted varimax 

as pre-rotation; hence, works better when 

factors are very complex (variables load on 

more than one factor). But it can fail in rare 

circumstances. 

Hyperalt (This publication) An experimental alternative to hypermax that 

uses quartimin rather than weighted varimax 

as the pre-rotation. 

Hypercon Fleming(2012) A confirmatory hyperplane fitting rotation, in 

which the user pre-specifies hyperplane versus 

salient loadings. 

 

 

The factor pattern for the initial solution (unweighted least-squares) can be seen on p. 16 

of Appendix B. The hypercon solution is shown on p. 26. But for greater clarity the factor 

pattern and correlations are repeated in Table 9 (below).  

 

The most salient loadings (those > 0.15 in absolute magnitude) are highlighted, so that 

the structure becomes clearer. In fact, all of the hypothesized hyperplane values for the 

hypercon solution are < 0.15. Using this as a rough index for hyperplane count (i.e., 

values that are close to zero or essentially in the hyperplane), then, this count  is as 

predicted, with 20 in the hyperplane and 13 salient loadings. 
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TABLE 9 

Factor Pattern Matrix for  

Hypercon Rotation of WISC-R Factors   

  

Subtest Factors 

 

 

Variable 

 

VC 

 

PO 

 

FD 

 

IFS 

 

Information 

 

.79 

 

-.06 

 

-.02 

 

.99 

Similarities .65 .06 .04 .95 

Arithmetic .60 -.13 .24 .79 

Vocabulary .64 .03 .04 .93 

Comprehension .81 -.05 -.03 1.00 

Digit Span .46 -.07 .32 .57 

Picture Completion .02 .61 -.11 .96 

Picture Arrangement .07 .37 .08 .88 

Block Design .06 .64 .08 .96 

Object Assembly -.15 .79 -.06 .94 

Coding -.03 .07 .67 .98 

 

SFI 

 

.99 

 

.97 

 

.69 

 

 

Factor inter-correlations: 

VC 1.00    

PO .575 1.00   

FD .049 .253 1.00  

    Note: Loadings > .15 in absolute value are highlighted. IFS = index  

of factor simplicity; SFI = scale fit index.  Total IFS = .90; total SFI = .92. 

 

 

Measures of the simplicity of structure include the following: 

 Bentler’s simplicity index, a function of all loadings (Bentler, 1977). A value of 0 

indicates maximum complexity, with the highest value of 1 when all variables are 

of complexity one (perfect cluster structure). For these comparisons, BSI was .99 

(p. 35 of output). 

 Lorenzo-Seva’s (2003) simplicity index. The extrema are the same for this 

measure (0 to 1) but values tend to appear lower than BSI. For this problems LSI 

= .51 for hypercon (p. 35). As might be expected with a moderately complex 

solution LSI is “midrange.” 

 Fleming’s (2003) scale fit index computed for each factor also ranges from 0 – 1. 

It is a function of the ratio of the average squared salient loadings (in this case 

those above .15) to the non-salients. These are summarized at the foot of each 

factor, with overall IFS = .94. But closer inspection shows that IFS values for 

Factors 1 and 2 are high (.99 and .97), while the value for Factor 3 (.69) is much 

lower. 

 Kaiser’s (1976) index is computed for each row of the loading matrix. This is also 
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a 0 – 1 measure. Values of .90 and above are considered quite good. Here the IFS 

values for each factor are given on the right side of Table 9, with overall IFS = .94 

(p. 33). But the value for the Digit Span subtest (.57) is noticeably lower, as this 

variable splits its loadings between Factors 1 and 3. 

 Using .15 as a rough cutoff value for separating high and low loadings, 20 

elements from the hypercon solution were less in absolute value than this 

criterion. The average (root-mean-square) of these hyperplane values was .076.  

 Finally, the graph of sorted absolute loadings is shown in Figure 3 where it is 

contrasted with orthogonal varimax loadings. Notice how much cleaner the 

structure is for the hyperplane fitting routine. Especially note how the hyperplane 

loadings form an almost straight but gradual line for the least values, taking a 

jump only after 20 ticks on the ordinate, where the loadings become “practically 

significant” (above .15). 

Overall, the results favor hypercon over other rotations that were tried (not shown due to 

space limitations.) 
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Figure 3: Sorted Absolute Loading Plot 

Comparing Hypercon and Varimax Rotations 
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Help Box 5: 

Confirmatory Versus Exploratory Analysis: 

Some Practical Guidelines 
 

Why would a confirmatory rotation be better than a good analytic rotation 

for certain problems? And if we are in confirmatory mode, why not use 

confirmatory factor analysis? These questions deserve further discussion. 

 

As to the first question, remember that factor analysis is best applied to 

large samples. In the previous example the sample of 232 cases is “not bad” 

relative to the number of variables and factors, especially given that, with 

such clinical samples, it is difficult to find a large number of cases. But 

given the mixed results of prior research it might be concluded that this 

sample size isn’t big enough to “pin down” that elusive third factor with a 

conventional rotation, one that might capitalize on chance variations in the 

data in order to minimize the rotational discrepancy function in the sample. 

With the confirmatory rotation the researchers are saying, in effect, okay, 

this is what we think is the most likely outcome—let’s try it to see if it 

works. If not, we are not bound to stick with it, and can try other options. 

 

As to the second issue, yes, confirmatory factor analysis is not an 

unreasonable option with this data. And there are, indeed, different schools 

of thought on this subject. This is not so much an either-or, which-is-really-

best situation. Most interesting work in social science is complex, and is 

almost never purely exploratory or confirmatory, because the research 

questions allow for a little of both; so a “let’s find out” attitude calls for a 

flexible approach to methodology. Neither do results exist in isolation of 

human judgment; it is never prudent to rely solely on mechanical or 

automated computer program defaults to make decisions for us.  

 

With these thoughts in mind, note that confirmatory factor analysis is 

scarcely ever purely confirmatory. Even when results appear to confirm 

basic hypotheses, at least some post hoc model modification is usually 

required in order to obtain an acceptable fit. Michael Browne (2001, p. 113) 

addresses this problem: 

 
Confirmatory factor analysis procedures are often used for exploratory purposes. 

Frequently a confirmatory factor analysis, with prespecified loadings, is rejected and a 

sequence of modifications is carried out in an attempt to improve fit. The procedure then 

becomes exploratory rather than confirmatory . . . In this situation the use of exploratory 

factor analysis, with rotation of the factor matrix, appears preferable. 

 

Finally, note that one study in one sample is never completely sufficient to 

answer the research questions posed by any broad theory. 
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Second-order Factor Analysis of WISC-R Subtests 

A second-order factor analysis was conducted based on the correlation matrix between 

the three first-order factors. The results are shown in the Appendix, pp. 43-54. The 

second-order loadings are: 

 

                                                            “General  

          Intelligence” 

          Loading  Communality 

 

Factor 1: Verbal comprehension:  .569   .323 

Factor 2: Perceptual orientation:  .988   .977 

Factor 3: Freedom from distractibility: .214   .046 

 

Although Factor 2 has a much higher loading than Factor 1, this result may be partially 

artifactual, as the two first-order factors are substantially correlated (r = .575); and clear 

results in a factor analysis depend on having at least three good indicator variables for 

identifiability. (Second-order factor three has a low communality; hence it cannot be said 

to be a good indicator). Still, the results further illustrate Explorer’s capabilities.  

 

The Schmid-Leiman (1957) hierarchical factor structure is shown on p. 52. From this it 

can be seen that all of the variables except coding have at least a moderate loading on the 

general factor. But as for reliabilities (see Help Box 6) the higher-order coefficient omega 

(.581) is not particularly high, nor is the alpha coefficient (.575). Note also that the 

loadings for Factor 2 are all quite small, mainly because these items contribute 

significantly to the general factor.  

 

Item Analysis Results for WISC-R Subtests 

For test constructors Explorer has several item analysis features. (With the Wechsler 

tests, of course, the psychometric properties of the subtests are already well-known—we 

are not doing test development here, but nevertheless the various tables and statistics in 

the Appendix serves to illustrate the program’s capabilities.) 

 

First, the table of sorted loadings (p. 34 of Appendix) makes it easy to separate the salient 

items from the non-salients. (Note for Factor 3 there is really only one highly salient 

loading, and that is for the Coding subtest.)  

 

Summary factor scale statistics (already discussed; see above) are shown on p. 35. 

 

For factors with three or more salient loadings, separate factor analyses of these items are 

conducted, and from these, omega coefficients are computed. For Factors 1 and 2 these 

appear on pp. 36 and 37. 

 

The correlations between the factor scales (scales based on the sums of the salient items) 

are given on p. 38. These will differ somewhat, of course, from the correlations among 



 

 -31- 

 

the latent variables themselves (p. 27). 

 

Alpha coefficients for the factor scales are shown on p. 39, and item-total correlations, 

along with changes in alpha if item is deleted, are given on p. 40. In scale construction 

applications, items with low correlations, or which do not contribute to the overall 

reliability, are candidates for elimination. 

 

Additional results from this analysis can be viewed in the Appendix. 

 

 

  

Help Box 6: 

The Alpha and Omega of Reliability 
 

Factor analysis is often used to validate multidimensional scales of 

measurement. Factor scales have been used to measure, for example, 

dimensions of attitude, personality, and intellect, as well as many other 

attributes. In scale construction, many items are tried, and retained or 

eliminated based on psychometric evaluations, which include results of item 

analysis, item-total correlations, reliability, and factorial validity (i.e., items 

designed to measure a particular attribute should load uniquely on a given 

factor). As can be seen in the Explorer in Action example, Explorer 

provides many helpful statistics and measures to facilitate construction and 

evaluation of multidimensional factor scales. 

 

Coefficient alpha (or Cronbach’s alpha; Cronbach, 1951) is used 

extensively as a measure of internal consistency reliability, 

unidimensionality, and homogeneity, for scale items. But in fact, unless 

very strict assumptions are met (which is very often not the case), alpha is 

really none of these (Sijtmsa, 2009)—though it still can be useful as a 

relative measure for item analysis when creating or testing factor scales. 

Also, reporting alpha remains de rigueur for having articles on scale 

construction or test validation accepted for publication. Recent articles (see 

especially the series in V. 74, 2009, of Psychometrika) question this 

practice. Unfortunately, no uniform consensus exists at present as to which 

alternative measures should be used in place of alpha.  

 

However, when using exploratory factor analysis, I concur with Revelle and 

Zinbarg (2009; also see Zinbarg & others, 2005), that McDonald’s (1978; 

1999) coefficient omega is a superior measure, and one that should be 

reported along with alpha in empirical studies (and eventually omega may 

supersede alpha).  

 

One definition of alpha shows it to be a function of the ratio of the average 

inter-item covariance to the total variance of the items comprising the scale. 

McDonald (1978) showed, under fairly reasonable assumptions, that as the 

 



 

 -32- 

 

ratio of common factor variance to total item variance, coefficient omega is 

a more suitable measure of domain validity and generalizabilty. 

 

When a single (general) factor is requested, Explorer computes both 

coefficients alpha and omega for the factor. When item analysis is requested 

in multiple factor solutions, Explorer computes these coefficients for each 

factor scale—a scale being defined by variable loadings greater than some 

minimal value (.40 is the default, but this value can be altered). It does this 

by performing separate factor analyses for each factor scale (i.e., it factors 

the items with the largest loadings).  

 

In addition, when a second-order factor analysis is performed and a single, 

general second-order factor emerges, Explorer computes alpha and omega 

for this general factor. Revelle and others (2005) refer to this coefficient as 

ωH (or higher-order omega).  

 

McDonald (1978) also defined a coefficient that is equal to the ratio of the 

total common variance (based on both the second-order and lower order 

factors) to the total item variance. Explorer also outputs this ωT statistic 

when a second-order analysis if performed with a single general factor. 

 

For more details on these measures and their interpretation, refer to the 

articles cited in this section. 

 

One note of caution is necessary: since alpha and omega are based on 

summated scales, items with negative loadings can result in “negative 

reliabilities,” which of course are invalid; hence it may be necessary to 

recode variables in order to reverse the signs of certain items before 

performing the factor analysis.  

 

 

 

 

Viewing and Printing Your Output on Microsoft Systems 
 

Using Explorer in conjunction with Word or Notepad there are several options for nicely 

formatted output. (If you simply send your output file to your printer the formatting may 

overflow or otherwise not correctly fit the page.) A non-proportional font is required, 

with “Courier New” the default. As this typeface is a little faint, it may help to bold your 

output before printing. 

 

1. Word 2010: “Everything fits on a page” (8.5 x 11 inches, per U. S. Standard).  

Do not use the “.txt” file extension with your output file (e.g., save as myoutput or 

results.out). Open your output file in Word, then select Page Layout  margins narrow. 

Note that the font type should be Courier New (a non-proportional font) 10-point. If this 

tends to look a bit faint it might look better if you first bold your document. 
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2. Notepad or other text processor: No pagination (saves paper). 

Save your file with a “txt” extension (e.g., results.txt), and then open in Notepad. If 

darker type is wanted (optional) first bold your output before printing. 

 

 

 

Other Computing Resources for Factor Analysis 
 

SAS
TM

 , STATA
TM

, and SPSS
TM

 are well-known statistical packages, but for factor 

analysis applications, other, free resources exist. The CEFA program (Browne and others, 

2008) and Factor (Lorenzo-Seva & Ferrando, 2006), as with Explorer, provide features 

not found in these commercial packages, including newer and lesser known rotations. 

Gradient projection algorithms for factor rotation may be freely downloaded from 

http:/www.stat.ucla/research/GPA. These can be interfaced with SAS, SPSS, R language, 

etc. The Mplus structural equation modeling program (Muthén & Muthén, 1998-2010) is 

not free but it includes facilities for exploratory SEM, which of course includes factor 

analysis.  
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Appendix A 

 

Non-Parametric Bootstrap Standard Errors and 

Confidence Intervals for Loadings and Factor Correlations 

 

Bootstrap standard errors (BSEs) for factor loadings and factor correlations, along with 

confidence intervals, are available in Explorer 4.0, but there are some restrictions: 

1. Raw data, with no missing data, must be input. The <data> paragraph must specify 

matrix = raw; 
2. The analysis paragraph must specify boots = numboots; 500 is typical. 

3. Only the correlation matrix may be factored (not the covariance matrix). 

4. Variable and case selection are not allowed. 

5. Communality estimates are based on squared multiple correlations. 

6. Methods of extraction are currently limited to OLS, Alpha, ML, and iterated PFA. 

7. Methods of rotation are currently restricted: (a) all orthogonal rotations may be used, 

but (b) only the following oblique rotations are available: direct quartimin (aka CF 

quartimax), oblique (Crawford-Ferguson) varimax, geomin, oblisim, bi-factor 

quartimin, and bi-factor geomin.  

 

The method follows from Zhang (2014) and Zhang, Preacher, and Luo (2010).  

Although originally developed for ordinary least-squares factor analysis, the method is 

non-parametric and may be used with other methods as well, and these “…are consistent 

regardless of data distributions and model misspecification” (Zhang, 2014, p. 343). 

 

For the “alignment problem,” bootstrapped samples are matched to the original loading 

matrix using reflections of signs and column permutation, as described below. 

 

Warning: Alignment can fail when samples are small (boostrapping requires at least 

“moderate” sample sizes), when too many or too few factors are extracted, or when the 

factor structure is unclear. On the positive side, BSEs work well with most “reasonable” 

data found in practice when the model
5
 is correctly specified (the number of factors in 

particular). 

 

Misalignment Problems and Heywood Cases 

 

In order to insure accuracy the rotated bootstrapped factor loading and correlation 

matrices must be made to “match” the original set. This may require column interchange 

and/or reflection of signs. Here is how Explorer handles the alignment problem: 

 

1. A matrix of congruence coefficients (or “unadjusted correlations,” Tucker, 1951) is 

computed between the original and bootstrap sample loadings. 

2. Based on the sizes of the coefficients in this matrix, a signed permutation matrix is 

formed to transform the bootstrapped loadings so that they are best matched to the 

                                                 
5
 Not everyone seems aware that EFA (as compared to, say, component analysis) is properly a statistical 

model subject to testing (Browne, 1969; Jöreskog, 1979). 
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original loading matrix in terms of factor ordering and signs. Factor intercorrelations 

need to be transformed as well. 

3. If factors cannot be matched based by congruence coefficient (e.g., when two 

bootstrapped factors appear to match a single factor of the original matrix) the 

iteration is skipped. These are totaled and then reported at the end of the run.  

 

Standard Errors When the Model is Misspecified 

 

My belief is that when aligning factors, there should be a match in which corresponding 

bootstrap factors resemble the original factors, in the sense that, following transformation 

via a signed permutation matrix, a matrix of congruence coefficients should exhibit larger 

values on the diagonal than any off-diagonal elements in the same row or column. 

Departures may occur when, for example, one factor coalesces with another because the 

number of factors is incorrectly specified. This could indicate that the number factors 

should be reduced. Explorer tallies but does not include such cases in computing standard 

errors, and, if the percentage of such cases is large (e.g., > 50%) the user should take 

note. 

 

When a Heywood case occurs (estimated unique variance less than zero) an attempt is 

made to “repair” the problem and the iterations halted. Repairable Heywood cases are 

included in Explorer, and they are tallied. Heywood cases could also represent model 

misspecification, usually due to lack of statistical power (small N), or from the failure to 

specify one or more additional factors. (As was stressed earlier, correctly specifying the 

number of factors is probably the most crucial decision when conducting EFA.) 

 

Statistical Significance Criteria 

 

Confidence intervals are based on alpha = .05, two-tailed, with Bonferroni adjustments 

for family-wise control of Type I errors. 

 

Why Explorer Does Not Base Factor “Scales” on Significant Loadings 

 

Explorer can compute factor scales based on highest loadings on each factor, which 

include item analysis and reliability coefficients. The criterion for a high loading may be 

adjusted by the user. So, why are the items included on each scale not based on the 

criterion of statistical significance? That is because as all researchers know, statistical 

significance does not necessarily imply “practical importance.” With BSEs small 

appearing loadings (e.g., < .15) are sometimes significant. Of course factor scales may 

require adjustment by the user in cases where “high” loadings are not statistically 

significant. 
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Example: Two Factors for the Rosenberg Self-Esteem Scale 

 

Data for 210 colleges students on the RSSE (Rosenberg, 1965) were previously collected 

by the author. Even though the total score is used as a measure of general self-esteem, the 

test is known to produce two factors, which were extracted here using OLS and rotated 

via quartimin. The tables from the output are reproduced below for 200 bootstrap 

samples. Asterisks mark the significant parameters. Notice that in this example, at least, 

had the conventional rule of  loadings > .30 been applied, the same loadings would have 

met the criteria. (But for a counterexample, see Zhang, 2014, Table 3, p. 10.) 

 

 
           Q u a r t i m i n   F a c t o r   P a t t e r n 

 

                         F   1       F   2 

  

    1  Var 1             1.000*     -0.107 

    2  Var 2             1.016*     -0.130 

    3  Var 3             0.678*      0.221 

    4  Var 4             0.744*     -0.003 

    5  Var 5             0.558*      0.209 

    6  Var 6             0.824*      0.112 

    7  Var 7             0.765*      0.118 

    8  Var 8             0.126       0.571* 

    9  Var 9            -0.085       0.916* 

   10  Var 10            0.262       0.631* 

 

 
             F a c t o r   C o r r e l a t i o n s 

 

 

                        F   1       F   2 

  

        F   1           1.000 

        F   2           0.675*      1.000 



 

 -41- 

 

        S t a n d a r d  E r r o r s  o f  L o a d i n g s 

 

                         F   1       F   2 

  

    1  Var 1             0.100       0.068 

    2  Var 2             0.094       0.055 

    3  Var 3             0.169       0.144 

    4  Var 4             0.095       0.079 

    5  Var 5             0.166       0.142 

    6  Var 6             0.106       0.082 

    7  Var 7             0.118       0.097 

    8  Var 8             0.172       0.174 

    9  Var 9             0.215       0.237 

   10  Var 10            0.200       0.188 

 

 

     Standard Error Summary Statistics: 

     ---------------------------------- 

 

     Number of samples          =     500 

     Number of Heywood Cases    =       0 

     Non-fixable Heywood Cases  =       0 

     Number of mis-matches      =      28 

     Effective number samples   =     472 

     Percentage of effective    =      94% 

 

     Average SE                 =  0.13495 

 

(A mis-match occurs when the bootstrapped loadings cannot be aligned 

      with the original loadings.) 

 

     Bonferroni corrected Z-scores for 95% confidence interval: 

     For loadings,     Z =      2.773 

     For correlations, Z =      1.960 

 

 

    S t a n d a r d  E r r o r s  o f  C o r r e l a t i o n s 

 

                        F   1       F   2 

  

        F   1           0.000 

        F   2           0.179       0.000 
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     C o n f i d e n c e  I n t e r v a l s 

 

      f o r   F a c t o r  L o a d i n g s 

 

          F  1           F  2 

  

   1 ( 0.724, 1.277)(-0.296, 0.083) 

   2 ( 0.755, 1.278)(-0.282, 0.022) 

   3 ( 0.210, 1.145)(-0.179, 0.620) 

   4 ( 0.481, 1.007)(-0.221, 0.215) 

   5 ( 0.099, 1.017)(-0.186, 0.604) 

   6 ( 0.531, 1.117)(-0.115, 0.338) 

   7 ( 0.437, 1.093)(-0.151, 0.388) 

   8 (-0.350, 0.602)( 0.089, 1.053) 

   9 (-0.681, 0.511)( 0.260, 1.572) 

  10 (-0.294, 0.818)( 0.111, 1.152) 

 

 

 C o n f i d e n c e  I n t e r v a l s 

 

 f o r  F a c t o r  C o r r e l a t i o n s 

 

          F  1           F  2 

  

 F  1( 0.000, 0.000) 

 F  2( 0.307, 0.867)( 0.000, 0.000) 
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Appendix B 
 

Output from Hypercon Confirmatory Rotation for WISC-R Factors 

 

[The actual output follows in the later pages of the manual (downloadable as a separate 

document). A brief, page by page, description appears below.] 

 

 

Page(s)     Description 

 

1 

 

Echo back of input command file is printed. The time, date, and name of 

command and output files are listed first. The <data> paragraph specifies the 

number of cases, the format for reading the raw data, and the name of the file, 

which resides in the current directory. 

 

The <headers> and <labels> paragraphs provide run titles and variable labels, 

respectively. 

 

In the <analysis> paragraph the method of extraction (minres) and oblique 

rotation (hypercon) are specified. The number of factors is pre-specified (3) 

and the initial communalities are specified to be squared multiple correlations. 

The file for reading the zero-one hypercon weight matrix is also specified. 

 

A second-order factor analysis is requested, with one higher-order factor. 

 

Plots of the first 3 factors are specified in the <plots> paragraph, and maximal 

output s requested in the <output> paragraph. 

 

2-3 

 

Univariate summary statistics are given (only when raw data are input). 

 

4 

 

Most extreme cases are listed so that potential univariate outliers may be 

detected. 

 

5 

 

Correlation matrix is printed. 

 

6 

 

The eigenvalues of the correlation matrix are shown, along with percentages of 

variance. 

 

7 

 

Plot of the number eigenvalues against the number of factors (scree plot). 

 

8 

 

Multivariate summary statistics. 

 

9 

 

Most extreme cases, based on multivariate statistics (useful for detecting 

multivariate outliers). 
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10 Matrix of partial correlations (with multiple correlations on the diagonal).  

Many statistics useful to factor analysts are based on this matrix. 

 

11 

 

Measures of sampling adequacy. For an interpretation, see Kaiser (1981), who 

preferred these to the Kaiser-Meyer-Olkin statistic (also given here). 

 

12 

 

Minres (minimum residuals analysis) is the method of factoring. This page 

shows how many iterations it took (28) to find the solution, and how the 

convergence criterion changed with each iteration. If too many iterations occur 

it may be a sign that the starting values (initial communality estimates) are 

poor. (Maximum number of iterations is 200, by default.) 

 

13 

 

Final eigenvalues, of the “reduced” correlation matrix (correlation matrix with 

communalities inserted in the diagonal, or more technically, the covariance 

matrix of the common parts of the variables). 

 

14 

 

Initial and final communalities and unique variances. In this case, initial 

communalities were squared-multiple correlations of each variable with all of 

the others. Final communalities are found after the 28 iterations. 

 

15 

 

The fit measures here are chi-square and the corresponding normal curve 

values. Statistically speaking, a non-significant chi-square indicates a good fit, 

meaning that the number of factors is sufficient to account for the results. 

 

16 

 

Unrotated loadings are of less interest (are less interpretable) than the final, 

rotated loadings (elements of the pattern matrix). 

 

17 

 

Residual correlations are based on standardized residuals. These are, in other 

words, what remains of the correlation matrix after factors have been extracted. 

 

18-19 

 

The plot of standardize residuals and the resulting statistics below the graph 

give some indication of the effectiveness of the factoring. If values are large (p. 

20) then the factors have not completely exhausted the information in the 

correlation matrix. 

 

20 

 

The factor score weights are the coefficients used to estimate the factor scores 

from the raw data. These are mainly of mathematical interest and tend to be 

difficult to interpret (they don’t exhibit the same simple structure as the pattern 

matrix). 

 

21 

 

Covariances and correlations of score estimates. What to look for are large 

values in the diagonal. These are squared-multiple correlations of the variables 

with the factors. Note that the correlations of the factor scores are not 

generally quite the same as the correlations among the factors. This is a 

technical point, and it is related to the problem of factor indeterminacy, so the 

reader is referred to Mulaik (2010). 
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22 

 

This page gives details on the type of oblique rotation that was performed 

(hypercon), and related information. 

 

23 

 

The (Cureton-Mulaik) row normalized loadings of the initial factor matrix that 

is then rotated by hypercon.  

 

24 

 

Target matrix. The zeros indicate items targeted for the hyperplane (the low 

loadings) and the ones indicate the items expected to have non-trivial loadings 

in the final solution. 

 

25 

 

Oblique transformation matrix. The final oblique solution is equal (in matrix 

algebra terms) to the initial solution post-multiplies by this transformation 

matrix.  

 

26 

 

Hypercon pattern matrix. This is the most important l result! 

 

27 

 

Factor intercorrelations are also an important part of the solution. If nothing 

else, report the pattern matrix and this matrix in your research report. 

 

28 

 

Factor structure. This is the matrix of correlations between the variables and 

the factors (see discussio  

Refe n of interpretation of the matrices of factor analysis in the main text). 

 

29 

rence structure. This matrix is proportional to the factor pattern, but contains 

semipartial correlations (Also see discussion in text. 

 

30-32 

 

Factor loading plots help to see visual the relationships among the factors. 

Values are from the reference structure matrix (proportional to the factor 

pattern, but scaled so that the largest possible values are + 1.0). 

 

33 

 

Kaiser’s indexes of factor simplicity for each variable. 

 

34 

 

Sorted loadings. Helps to see what variables are really most salient for each 

factor. 

 

35 

 

Factor scale summary statistics. Of most interest are the scale fit index and the 

Bentler and Lorenzo-Seva measures. See Fleming (2003) and Lorenzo-Seva 

(2003) for interpreting these – but in general, higher values indicate simpler 

structure. 

 

36-37 

 

Factor analysis of scale items. Items loading highest on each factor are 

separately factor analyzed,, and McDonald’s coefficient omega is computer for 

each scale. 

 

38 

 

Factor scale intercorrelations. The correlations among the scales formed by the 

summation of variables with the highest loadings on each factor are presented 
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her. (They differ from the correlations among the factors, discussed previously, 

on p. 28.) 

 

39 

 

Coefficients alpha for factor scales. 

 

40-41 

 

Item analysis. These statistics, along with the previous (p. 35), are of special 

interest to researchers interested in scale development, in which each factor 

purportedly represents a different construct. In such cases the researcher hopes 

that the factors will also be of low complexity. Item-total correlations and 

coefficient alpha for each of the factor scales are therefore useful information. 

 

42 

 

Factor score weights for the rotated factors. 

 

43 

 

Covariance of factor scores. Similar to for p. 21, except that these apply to the 

final oblique factors. 

 

44 

 

Details are given for the requested second-order factor analysis. 

 

45 

 

Eigenvalues for the first-order correlation matrix are given. 

 

46 

 

A scree plot of the eigenvalues based on the first-order factor correlations is 

shown. 

 

47 

 

The initial eigenvalues for the “reduced” correlation matrix are listed for the 

second-order solution. 

 

48 

 

Details of the factor extraction show that 13 iterations were required. 

 

49 

 

Final eigenvalues of the correlation matrix. 

 

50 

 

Second-order factor loadings. 

 

51 

 

Initial and final communalities and unique variances. 

 

52 

 

This is the Schmidt-Leiman hierarchical factor solution, exhibiting loadings on 

the first general factor (G1) and the residual, orthogonalized loadings on the 

three first-order factors (F1 – F3). Notice that the loadings for factor F2 are 

nearly zero because these are essentially “absorbed” by the G1 factor. This can 

also be seen from the second-order loading on p. 50, where the loading of F1 is 

.994. Reliabilities (omega and alpha) are given at the foot of this table. 

 

53 

 

Residual correlation matrix. 

 

54-55 

 

Plot of the standardized residuals, and table of largest residuals. 
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(The rest of the Appendix consists of the computer output, downloadable as a separate 

attachment.) 


